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Abstract. The problems of elasticity, where non-linearity derives from
geometrical effects of combination between deformations and stresses,
are studied with a tensor three-dimensional approach. Deformation ef-
fects are analysed by means of the Cristoffel symbols in the deformed
medium with respect to that of the elastic medium, in a Lagrangean ap-
proach to the structural behaviour, where displacements are chosen as
unknowns of the problem. The non-linearity in the equilibrium equa-
tions is completely taken into account in a proposed equation system.
The interaction between deformations and stresses is particularly im-
portant in those structures where are present components with small
thickness and wide extensions.
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Riassunto. // problema della elasticita, dove le non linearita derivano
da effetti geometrici di combinazione fra deformazioni e sforzi, vengono
studiati attraverso un approccio tensoriale tridimensionale. Gli effetti
delle deformazioni vengono studiati per mezzo dei simboli di Cristoffel
nel mezzo deformato in rapporto al mezzo elastico, in un approccio La-
grangiano al comportamento strutturale, nel quale gli spostamenti sono
assunti come incognite del problema. Le non linearita nelle equazioni
di equilibrio sono prese in considerazione completamente in un sistema
di equazioni proposto. L’interazione fra deformazioni e sforzi é partico-
larmente importante nelle strutture in cui sono presenti componenti con
piccoli spessori e ampie estensioni.

Parole chiave: instabilita elastica, comportamento strutturale, simboli di
Cristoffel, calcolo tensoriale, equazioni di equilibrio, problema non lineare.

1. General remarks on structural approaches

The elasticity quoted in the title means small material strains. This doesn’t
mean small displacements in a structure. The aim of this paper is therefore to
discuss the effects of the non-linearity due to the combination between deforma-
tions (as bends and twists) and stresses, when strains are small.

The A., [18], introducing from a general point of view the structural
problem, reviewed considerations that are here reported in a part very useful
also to our purposes. Structural problems, with the exception of those con-
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cerning the determination of fatigue effects, where a discrete nature of
materials is involved, can be faced with mathematical models, that assume
materials as continua. Disregarding thermal, piezoelectric and electromag-
netic loads, here not considered, they can be divided into two families:

a) the determination of the structural behaviour under mechanical exter-
nal loads, which, generally speaking, has a dynamic nature, whose time
history is known, and also under external constraints, of a known time
history; by structural behaviour we mean both the evolution of a structure,
studied by a structural analysis, and the stability of such an evolution;

b) as an increasing parameter is considered, the determination of critical
stability limits of self-induced deformations, generally speaking of a dy-
namic nature, where external loads are generated because of such deforma-
tions themselves, in the presence of external force sources, must be deter-
mined. We are here only concerned with point a). Structural analysis, from
the most general point of view, should be considered a three—dimensional
problem, where non Cartesian co—ordinate systems can also be adopted. As
far as point a) is concerned, some precise statements should be made. Exter-
nal loads, in a three-dimensional structure, can be applied as distributions of
a specific surface force (pressure) on portions of the boundary or as distribu-
tions of a specific volume force (for instance weight or inertia force) on
portions of the definition field. Both can be put under the form of distribu-
tions of specific volume force by means of “generalised functions”, [4] and
[12]. External constraints can assume the nature of impressed deformations
applied to regions of the field of definition— local unitary deformations
having a non elastic nature such as dislocations, plastic deformations, ther-
mal dilatations — or of imposed positions, to points of the field or of the
boundary, coherent with the desired behaviour of the structure as far as
continuity is concerned. All these constraints can be put under the form of
conditions on regions of the field of definition, by means of “generalised
functions”, [4], and [12]. When the material is considered a continuum, the
structural problem has at least three unknown functions, the displacement
components, that depend on three space coordinates and, in dynamics, on the
time. In the case of thin structures — a dimension smaller than the others — or
long structures — two dimensions smaller than the other —, by means of
axioms concerning stress or stress behaviour, as suggested by some great
and brilliant scientists as Bernoulli, de St. Venant, Timoshenko and so on, it
is possible to reduce the number of space co-ordinates to two or one, respec-
tively, in approximate theories where the equilibrium equations concern
volumes that are infinitesimal in two or one dimensions, respectively — the
minimum number of the unknown functions depends on the degrees of
freedom permitted by the axioms. The resolving equations in such unknown
functions in a rigorous approach result not linear. Non-linearity in a mathe-
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matical model can derive from three sources — i) changes in the form of the
body due to displacements, ii) geometrical relations between displacements
and strains and iii) non linear behaviour of the materials, concerning in
particular relations between strains and stresses. In order to present a sample
of 1) and ii) we can refer to the analysis of curved shells due to Cicala, [5],
[6] and [11], where in a two dimensional analysis are given the following
equilibrium equations:

1 0 1 0
Za_gaNa+h_ha_§bNba+pga(Nab+Nba)+pgb(Na_Nb)+paQa+pabe+pa:0

1 0 1 0
h_ba_ébNb+h_aa_§aNab+pgb(Nab+Nba)+pga(Nb_Na)+prb+paan+pb:0
iiQa_i_iin—i_pnga—i_logng_pa]Va_Iob]vb_pab(]vab-+_]\[})¢1)-'—l7:()
haaga hbagb

1 0 1 0
—_—M +——M, + M, +M, )+ M, -M,)=

ha a ga a hb a gb ba p ga( ab hu) ID gh( a b) Qa

1 0 1 0

h_ba_ghMb +h_aa_§aMab +pgb(Mab + Mba)+pga(Mb - Ma) :Qb

pab(Mb_Ma)+paMab_prbu+Nab_Nba :O

In such equations &, &, are orthogonal curvilinear co-ordinates on the me-
dium surface, /,,h, are the modula of the derivatives of the position respect to
the co-ordinates, N,,N,,N ,,N,, —Q.,0,—M M, ;M ,M,, are respec-

tively normal, transverse and bending and twisting stresses on an element of
shell, £, Py, Py = Poas Py are Tespectively curvatures and geodetic curvatures

of the medium surface. When curvatures and geodetic curvatures are composed
by two contributions, one due to the form of the initial reference system and one
due to the deformations of the body, this last part must be expressed as stresses
in terms of the unknown displacements. So the relative terms of the equilibrium
equations result non linear. Since we are concerned only with elasticity, we can
reduce our analysis to the field of small strains and in consideration of the most
frequent behaviour of materials to linear stress-strain relations. The dynamic
nature of the general structural problem requires the expressions of both the
internal forces and the inertial forces. The inertial forces require the evaluation
of the accelerations due to the displacements as functions of time. The non-
linearity of the effects of the displacements make necessary an analysis based or
on an Euler’s or an Lagrange’s approach (see [8], Cap. IX, § 66). Because of the
possibility of deriving a dynamic analysis starting from a static one by means of
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the d’Alembert principle, we shall usually refer to static analyses, quoting the
dynamic aspects, if necessary. The static problem of the interaction between
deformations and internal stresses was already faced by the A., [7], with refer-
ence to the linear approaches, in an introduction that is very useful also to our
purposes and is here reported. The static problem of a structure submitted to a
given set of loads F (whose intensity is represented by the value P of one of
them) consists after all in determining the deformed configuration of the same
structure and the value of P for which the failure occurs. Such a problem is
solved through differential equations based on a proper schema of the given
structure, where the phenomena to be analytically processed are pointed out. To
the selected schema is associated a system of co-ordinates established in the
space where the structure is defined. Assuming as a main unknown the expres-
sion related to the displacements of the structure (for example the shift of the
axis for the mono-dimensional scheme and the mean surface for the bi-
dimensional one), the problem will usually lead to a system of differential
equations, equal in number to the unknown functions, with proper conditions
at the neighbourhood. Such equations in the displacements are reached
through auxiliary unknown (strain, stresses, etc.) and expression (equilibrium
conditions of an infinitesimal element, relation between strain and stresses of
the material and deformation state at each point of the structure in function of
the unknown functions). When: i) linear relations exist between strain and
stresses, ii) displacements are such that in the evaluation of the deformation
state, the non-linear terms of the displacements themselves are negligible, iii)
the load application is gradual and the displacement accelerations are small, so
as to avoid inertial reactions to the displacements, under the conditions 1), ii)
and iii), for a given value of P, the expressions of the body deformation state
in function of the unknown are linear.

The equations of equilibrium, instead, consist of two types of terms: the
first is formed by derivatives, with respect to the co-ordinates, of stresses
(resultants of tensions) and gives account of the increments of such quanti-
ties through the infinitesimal element; the other is formed by products be-
tween internal forces (or resultants of tensions) and local bends or twists of
the body and gives account of the stress components unbalanced because of
the angle between face and face of the infinitesimal element under consid-
eration. The stresses (or resultants of tension) and the angles, to be intro-
duced into the equations of equilibrium, are those one which occur at the

equilibrium itself. The angles then will consist of two terms: A., corre-

i

sponding to the initial configuration, and &, due to the elastic deformation.
Symbolically we can write, [7]:
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The local stress values, expressed in terms of strains, can be symbolically
represented by & .

The products between angles and stresses then can be represented in the
form:

E(A+E8)=AE+E°

or rather they contain linear terms in £ and square terms. The equation thus
obtained can be reduced to a linear form, starting from a known reference

condition of equilibrium, symbolically represented by &, and generated by a

distribution of loads F —y , whose intensity is still represented by P and
such that in it stresses or displacements are proportional to P.
The problem consists then in determining the effect, starting from the refer-
ence conditions, of the application of loads ¥/

Symbolically, [7]:

g=pdé
dP

On the other hand, the angles can be symbolically expressed through:

d
A=A +PL0 ¢

and the products give place to the following terms, [7]:

2
P (A +P%% o) apdi, pr[ e 5 piopTi,, 2
dP dP dP dP dP
If now we neglect the terms in &’ , it follows that the first two terms are
constant, the third is linear and the fourth is linear in € , butnotin P and & .

The linear equations in the displacements are therefore of the following
matrix form, [7]:

L' (w)+PL(w)= 1, (1.1)
related to the element of unitary dimensions. In the (1.1) w is a matrix

(column) of unknown function, in number necessary and sufficient to define,
in the scheme used, the deformed configuration of the structure; #is a linear
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operator, represented by a (square) matrix of linear differential operators
generally with variable coefficients, acting on the w and such that Z{(w)
represents the differentials of the elastic stress resultants by deriving the w;
L is a linear operator of Z~type, but of lower order, and such that PL(w)
represents the forces generated by the combination of the internal stress
resultants and deformations, except for the non-linear terms; P represents the
intensity of the applied loads assumed to be proportional to it; f is a matrix
(column) of known functions. At the basis of the (1.1) there is a system of
co-ordinates in number necessary and sufficient to locate biunivocally, in a
proper schema, every “point” of the structure.

As to the validity of all the later considerations it is necessary that in any
equation synthesized by the matrix equation (6.1), the various terms express
forces acting on the element of unitary dimensions. To the equation (1.1) are
also associated boundary conditions which translate the respective constraint
conditions are linear, because placed either on displacements or on stress
resultants (which are stated above are linear in the displacements):

C(w)=g (12)

(defined on the boundary of S of V) where the g; are matrices of known
functions. The better approach to comprehend in a rigorous way the problem
of the combinations between deformations and stresses is the tensor calculus.
We shall make reference only to the tensor calculus applied to three dimen-
sional problem, leaving to the reader the extension, if desired, to one or two-
dimensional approaches. The minimum number of unknowns is three — the
displacements — that can be determined by means of the three equilibrium
equations. Such equations contain six stress components that can be ex-
pressed by means of six equations as functions of six deformation compo-
nents (stress—strain relations). The deformation components can be ex-
pressed by means of six equations as functions of the displacement compo-
nents (deformation—displacement relations). The problem can be considered
as containing fifteen unknowns with fifteen equations. The equilibrium to be
considered concerns the configuration under deformations, where the most
useful reference system is curvilinear. The tensor calculus, and in particular
the concept of covariant derivative, that utilises the Cristoffel symbols,
results particularly indicated.



GENERAL APPROACH TO NON-LINEAR PROBLEMS IN ELASTICITY 73

2. Approach by means of the tensor calculus

2.1. General concepts

The tensor calculus, or absolute differential calculus, begins with the
Gauss’s researches on curved surfaces. The tensor calculus of Euclidean
spaces, applied in elasticity and in the theory of special relativity, is to be
distinguished from the tensor calculus of curved or Riemannian spaces,
applied in particular in the theory of general relativity. The subjects of
elasticity are developed in plane and solid Euclidean space. Therefore we are
only interested in the tensor calculus of Euclidean spaces, where it is possi-
ble to introduce also Cartesian co-ordinate systems.

For the fundamentals of the tensor calculus we shall do reference to [8] and,
in particular for the reference system and the symbol choice, to [1] and [2]. Thus
we shall suppose that the tensor calculus is well known to the reader, discussing
only some concepts on the Cristoffel symbol and their use as a way for the
expression of bending and twisting of the reference system. As the application
of the tensor calculus to structures is concerned, we will discuss the adaptation
to our purposes of the concepts of strain tensors, stress tensors, displacement
tensors, equilibrium equations and stress—strain relations.

2.2. Strain Tensor

Let us consider the deformation of elastic media without making
the usual approximations of the classical (“infinitesimal”) theory. Let a
three—dimensional medium in an Euclidean space be subjected to deforma-
tion from the initial (unstrained) to its final (strained) position, described by
a strain tensor field. If (‘a, %a, a) are the curvilinear co-ordinates in an

. . 1 2 3 Jo .
elastic medium, and (x ,X7,X ) are the curvilinear co-ordinates after de-

formation, the deformation itself is in general given by differentiable
functions, 2:

xi:fi(la, 2a,3a). 2.1

f the initial squared element dsg and the final one ds® of arc length are
respectively, [2]:
2 _ a p
ds, = aﬂc(a)(d a)(d a),

2.2)
ds® = g, (x)dx”dx”
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we can also write, [2]:

ds; = h_dx’dx",

ds* =, k(d’a)(d"a), @3
Where
e = gpe(“ar, )("ac ) 2.4)
qu Zgaﬂ(P’xa)(‘i’xﬂ)'
With
Eup (x)z%(gaﬂ)(x)—haﬁ (x) (2.5)
aﬁn(a):%(aﬁk(a)_ aﬂc(a)) (2.6)
we have, [2]:
ds® —ds; = 28aﬂdx“dxﬂ (2.7)
ds® —ds’ :2aﬂ77(a)(d“a)(dﬂa) (2.8)

To our purposes it may be useful to choose as reference system in the
strained medium the transformed of the reference system in the original
medium and to put for (2.1):

a=x.

So (2.5) becomes
1
gaﬂ = E(gaﬁ - aﬂc) (29)
and
8up = aﬂc+2gaﬂ, (2.10)

where ;¢ is the Euclidean metric tensor of the reference system in the

medium and 2¢_, is the effect of the deformations at the level of strains.

Obviously no conditions can be imposed from a general point of view on the
choice of the (curvilinear) co-ordinate system (la, 2a, 3a) in the elastic
medium, even if one can prefer, for instance, a system that permits a simple
mathematical expression of the boundary surface.
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2.3 Euclidean Christoffel Symbols
The element of arc length squared in general co-ordinates takes the form:

ds* = S (xl,xz,xs)dx“dxﬂ, (2.11)

where g, are the components of the covariant Euclidean metric tensor and

the determinant of its components is zero, [2]:

811+--812-+-813
g2=1\95--8pr---&r3| =% 0 (2.12)
831---832--833

If we define, [2]
o Cofactor—of —g,,—in—g
g =
g

the functions g“[” are the components of the contravariant Euclidean metric
tensor with the following properties:

g’ =g", (2.13)
&8 = 5.
Let us now introduce the Euclidean Christoffel symbols of the second

kind F;ﬁ (xl,xz,x3):

, 1 ..[(0g og og
o (x, 2?2 )==g" | =L 4 Ca0 2D 2.14
af ( ) 2 & ( ox*  oxf  ox° 19

Since the law of transformation of the g, ,and g% is known, one can
calculate the law of transformation of F;ﬁ ()c1 ,xz,xS) . Under a transforma-
tion of co-ordinates X' :fi(xl,xz,x3), Fo’;ﬂ(xl,xz,f) will perform a

transformation. If g, and g“ﬁ are respectively the covariant and con-
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travariant components of the Euclidean metric tensor in the X' co-ordinates,
the Euclidean Cristoffel symbol:

— 1_.(0g og og,
F’ x1’x2’x3 — 5l off + ac af 2.15
aﬂ( ) 2g [Ox“ o ox° @13)

is given by the following transformation law:

ox* ox" ox' . o’x*t ox'
ox® ox’ oxt  ox“ox’ oxt

Ty (x,x% %) =17, (¥, 2%, %) (2.16)

Thus the Euclidean Christoffel symbols are not tensors and the involved
indexes can’t be considered as tensor indexes. Thay are of fundamental
importance for the introduction of the concept of covariant derivative, that in
the case of a covariant vector field (or covariant tensor field of rank one)

&, has the form:

oL
=2 T1°
é:t,a ax taé:a s

a

and in the case of a contravariant tensor field of rank two T fﬂ has the form:

aff aTa’B B oa a o
7:}, :ax—}'-’-FWT +F0‘}’T . (217)

The covariant derivatives are tensors and allow us to extend the concept
of partial derivative, that in the case of a scalars fields s give a covariant

os o . o
vector field o that can be indicated as a covariant derivative s, . Because
xi
of the particular choice of the reference system, we obtained (2.10). Intro-
duced in the expression of the Euclidean Christoffel symbols of the second

kind, it gives:

r;ﬂ(xl,xz,xz):%(zgia+i0c) 8(2ggi:aﬂ C) +6(26‘0;C;- aac)_a(zé‘gcj aﬂc)

(2.18)
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The part of Euclidean metric tensor depending on the external loads is
¢ and (2.18) shows that the expression of the Euclidean Christoffel symbol
contains products of ¢ and its derivatives

Curvatures and twists that can be expressed by (2.18) are so reduced to
sums of effects of initial co-ordinate system and deformations, see also [14],
[15] and [17].

2.4 Displacements as unknowns of the problem

We are now in the position to introduce the displacements due to loads as
unknowns of the problem. It can be obtained by expressing the fundamental
tensor of the deformed medium by means of the fundamental tensor of the

medium and the displacement vector 5('a) referred to the ‘a reference

system. Reference [8], Cap. IX, § 4 demonstrates and shows the following
expression for the strain tensor in function of the displacement components:

1
ikg=§(,.’ks+k,l.s+ 808). (2.19)

Taking into account the choice x' = ia, such expression, if we refer the
displacements to the deformed curvilinear co-ordinates s, = sl.(xj ), can be

modified as follows:
1 .
Eik :E(Si/k * Sk _Sr/is/k)7 (2.20)

that results the strain tensor in the deformed medium, where the Euclidean
metric tensor results:

i = ikc+(si/k Sk _Sr/iS/rk) : (2.21)

The determination of s, =s,(x’) in the deformed medium can be obtained
by means of a passage through a Cartesian reference system in the medium
'y ="y(’a), where the tensor expression ;5 of the displacement is:

. 0a
S =8 oy

The co-ordinates of the deformed point in the Cartesian system is

y=y+'s, (2.22)
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where the second member is a function of the a . The (2.22) result to be the
relation between between 'y and ‘a = x’. With reference to the deformed
medium the displacement tensor is given by

o

l

Si = js_j
ox’ (2.23)

It is now possible to use the (2.21) and obtain the expression of the strain
tensor in the deformed medium. It is possible to demonstrate the (2.21) in
another way. If P is a point of the medium and Q is the corresponding point
of the deformed medium,

O=P+s or P=Q0-%
and

ar_do
dc dx "

The Euclidean metric tensors in the deformed medium and in elastic me-
dium respectively can be expressed by means of the formulas

ik:dgxig and B :a—[:xa—Pk.

dx'  dx ox' oOx
oP oOP a0 _ d _
_;X_k:(_Q;_s/i]X(_Qk_S/k)
ox' Ox dx dx

J— — — + r
wC= 8k =Sk TSk TS Sk

that coincides with the (2.21). Taking into account that Taking into account

1
that &, = E( g, — 24a), the (2.20) is obtained.

2.5. Stress Tensor

A body of elastic medium in its strained position will occupy a volume
V' with a bounding surface S'. Let dS be the vector magnitude of a bound-
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ing surface element of a portion of the elastic medium in its strained position
and dS, its tensor representation. It is, [8],

2 _ _af
dS)y =g dSadSﬁ.
If u,v are surface parameters so that the parametric equations of the sur-

face S are given by x' = f"(u, V), the covariant vector dS, can be obtained
by means of the mixed product of vectors

i J
ds, = (a—Pai op o jx O sudv (2.24)

- N——
ox' ou oOx’ oOv ox"

In the (2.24) there appear vector mixed products that are values different
from zero only if i+# j#r. In such a case each of them has the scalar
density value \/g —see [8], Cap. II, § 9, p. 82 — which can be considered a
common factor. The other factors can be obtained as addends of the devel-
opment by rows of a determinant. In fact if #, are the versors of the curvilin-

ear co-ordinates, they are given by the formula

u.
" Ou ! ou

i J
fl% :(‘ ai/\b_l.aijxﬁrauav. (2.25)
g

In orthogonal Cartesian co-ordinates they can be obtained as addends of
the development by rows, starting from the first one, of the determinant

Ll
o' oy’ oy’
ou’ ou’ ou
o' o o
v’ ov  ov

ouov . (2.26)
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In curvilinear co-ordinates the tensor dS is given by:

ds, = [gd(x*,x),
ds, = Jgd(x*,x"), (2.27)
ds, =\[gd(x',x%).

where
dx? dx?
a’(x”,xq): du -~ dv dudv
dx? dx?
du ’ dv (2.28)

The surface element dS can be expressed as follows:
(dS)* =g”ds,dsS,.

The notion of stress tensor that we must introduce is based on the defini-
tion of the stress vector, i.e. a surface force that acts on the surface of a

volume. A stress tensor 7" is defined implicitly by the relation
FdS=T"dS,, (2.29)

where F" is the stress vector acting on the surface element dS.

Beside the surface forces are to be considered the so called mass forces,
i.e. forces that act throughout the volume (called body forces, volume forces
and so on) An example is the force of gravity, pgAv, where g is the gravi-

tational acceleration, p is the medium density and Avis the elementary
volume interested.

3. Equilibrium equations

The equilibrium equation in tensor notations can be obtained from an ap-
plication of the virtual work principle. We shall utilise the Lagrange’s for-
mulation of such principle, where rigid bodies are considered, even if we are
interested to elastic bodies. Our deductions will be correct if we shall refer-



GENERAL APPROACH TO NON-LINEAR PROBLEMS IN ELASTICITY 81

ence only to rigid body deformations. The principle states that, if rigid body
virtual displacements are considered, the virtual work of all the external
forces acting on any portion of the medium is zero, as a consequence of the
zero value of the boundary reaction virtual work. This statement has also the
value of physical assumption of the equilibrium. In our problems the stresses

across the boundary S and the mass forces (M’ per unit mass) acting on the
medium are the external forces.

As mass forces are considered, we shall do reference to its tensor repre-
sentation in the deformed medium curvilinear co-ordinate system. Let us

consider in the elastic medium a Cartesian coordinate system y, = y, ( ja) .

The tensor S, =3, ( ia) representing the displacements in such a system can

be easily obtained by means of the co-ordinate transformation. In the same
Cartesian system the deformed point is given by y, =y, + s ;- A representa-

tion of the same point in the deformed medium can be obtained observing
that we have a relation y, =y, (ia) =Y, (xi), which permit the transfor-
mation of the mass force tensor referred to x;. Obviously it is possible to
consider also the case where the mass force tensor depends on y,. The use

of distributions, see also [18], allows us to extend this definition also to
forces distributed on two or one dimensions.

Let us now briefly recall some elementary concepts about virtual dis-
placements and several their consequences as virtual work and so on. A
system of virtual displacements

i(“a,t)

is a system coherent with the constraints that is thanked to be superimposed
to the ( equilibrium ) configuration x' = x' (Sa) , SO obtaining a configura-

tion
X =x (Sa)+fci (Sa,t):)_ci (Sa,t) ,

in general not in equilibrium with the applied loads. The parameter ¢ — 0
determines the amount of virtual displacement. It is now possible to consider
partial derivatives for respect to ¢ and the corresponding variations. If

f ()?i) is a tensor field, its variation can be expressed as:
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, ox’
afz[f f’] X, 3.1)
( ) J Ot
where the covariant derivative reduces to the conventional if x’ is a Carte-

sian reference system or f ()?’) is a scalar field.

The virtual work &L of the external forces for arbitrary dx, ox, is:

SL= [[[pM?Sx,av + [[FSx,dS (3.2)
v N

where p is the mass density.
The second addend of the first term, for arbitrary continuous 6x, 5x,

can be transformed as follows:

[J176x,ds, = [[[(1%6x,) av.
V

S

where the equivalence from the first to the second member is obtained by
means of Green’s theorem or generalized Stokes’ theorem in curvilinear
coordinates or as an application of the divergence theorem, [8] Cap. IV, § 4,

n. 8, in consideration of the fact that (Tﬁ “é‘xﬂ) is the divergence of a
o

simple tensor.
Hence, for the virtual work of all the forces acting on any portion of the

medium, for continuous 0x, ox  Operating we obtain:
SL= M[(Tﬂ“ o tPMP)Sx, + T (§xﬂ),a]a’V (3.3)
v

If we consider, as rigid virtual displacements the translations, character-

ized by (§x p), .= 0, we must reach the condition for rigid virtual dis-

placements:

jvﬂ[(T,ga +pMﬂ)5xﬁdV:| ) (3.4)
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Because of the arbitrariness of dx  at any chosen point and of the portion

V of the body, (3.4) impose the following equations:
T,/ +pM” =0, (3.5)

that are the differential equations for equilibrium.

These equations can be written directly, assuming the principle of equi-
librium as the starting point of the mechanic, see [0], Cap. IX, § 4, n.7. In
such a case the principle of virtual works can be deduced as a consequence,
0. The first member of (3.2) is obviously the expression of a generic virtual
work for elastic displacements. So the virtual work 0L of all the external
forces (mass as well as surface) acting upon any portion of the medium
in any virtual displacement results (on using [3.3]) and [3.5]):

SL = jVﬁTﬂ“ (x5)., dV (3.6)

that can be seen as the virtual work of the internal forces. This could be a
simple way to introduce the virtual work principle for the elastic media,
where the virtual work of the external forces is equal to the virtual work of

the internal forces, for continuous dx,, :
([[omPsx,av + [[FPox,ds = [[[T7 (6x, ).,V . 3.7
v S bz

The stress tensor results to be symmetric:
T =T (3.8)
because (3.6) must vanish for any rigid virtual displacement, i.e. for

(§xq),p+(5xp),q.

4. Stress—strain relations

The principle of conservation of mass in presence of a virtual displace-
ment can be written:

5(dm)=8(pdV)=0, 4.1)
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where p is the density of the volume element dV in the strained medium and
dm = p dV is the element of mass.

If T is the temperature of dm and o is the entropy density (per unit
mass) the entropy of the mass dm isodm = padV . If and udm is the inter-

nal energy of dm, because of the fundamental energy—conservation law of
thermodynamics we have:

& (udm)—TS(odm)=5L 4.2)

where 0L is the virtual work of all the forces acting on dm.
The free energy or elastic potential ¢ can be written

p=u-To 4.3)

From (4.1) we have, taking into account also (3.6), (4.2), and (4.3)

[[[@hpar = [[[r*(@x,),, av - [[feT)podr, @4

where the integrals are extended over any portion of the strained medium.
Thus we have also:

= aﬂ —
p5¢ T (5xa)’ﬁ pO‘é‘T (45)
Euclidean metric tensor g;(x) in the strained medium, the Euclidean

metric tensor ,,c(a) in the unstrained medium. [2].

A rigid virtual displacement is defined by the equations:

5(ds) = S(g A de’ | =5g, ¢ de’ +g,5(d ) +g,.dx' 5’ ) =0.
(4.6)

The variation of the fundamental tensor is zero, 6g, =0, in any refer-
ence system, as a consequence of (3.1) and of the fact that in any reference

system g, . =0 (see [8], Cap. V). The variation o (dxk)can be calculated

as follows:
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S(dx*)=5(

s,
Hence we have:

S(dx*)=(x") ax”. (4.7)

,a

In conclusion, with some calculations we can obtain the equation
(§xa),ﬁ+(§xﬁ),a20. (4.8)

From the symmetry of the stress tensor, and (4.8), it results that in an iso-
thermal rigid virtual displacement the second member of (4.5) gives 0 =0.

Hence

(4.9)

Taking into account that 5(“a,ﬂ) =-"a,, (5)6“ ),ﬁ and, from (4.8) we

obtain that if "a“ (x) =g (x) ‘a,;, ¢ must satisfy the following complete
system of three linear first—order partial differential equations in the nine
variables “a, , :
0 0
a¢ “qf = a¢ “q” . (4.10)
8( a, ﬂ) 8( a,y)

There are nine conditions in (4.10) but three are identities and only three
of the remaining six are independent. From the theory of such systems of
differential equations we know that the general solution of (4.10) is a func-
tion of six functionally independent solutions.

There are some interesting solutions of equations (4.10), in particular in
the case of an isotropic medium, i.e. a medium whose elastic potential is a
strain invariant that may depend parametrically on the temperature T.

The elastic potential for an isotropic medium satisfies the differential
equations (4.10), see [1]. It can also be shown that any strain invariant is a

function of the three fundamental strain invariants 7, /, and I, that are
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functions of the strain tensor &, see [1] § [3] and appendix. Hence for an

isotropic medium

¢=¢(]1,12,I3,T),

i.e. ¢ is afunction of the strain tensor &’ and 7.
Conversely, from the assumption that ¢ is a function of the strain tensor

g and T the following result is obtained: ¢ is isotropic; see [1], § [3].

4.1 Stress—strain Relations for an Isotropic Medium
As we have just shown, the elastic potential ¢ for an isotropic medium

can be considered as a function of the strain tensor &, . Because of the

symmetry of &

rs

1
we have also & :E(g” +gsr). In ¢, we shall write

E((s‘rs + SS,,) wherever &, occurs, and thus we see that

2 _ 2 i

os o€

rs sr

0
with the understanding that in a—¢, say, all the other &’s (including

rs

g,, for that s, r) are held constant, so that in this differentiation no attention is
paid to the symmetry relations ¢, =&, .
Under a virtual displacement the variation of hpq and hence of the strain
tensor &, was given by
1

se =_Lesp = [hf(ﬁx ) +hf(5x )} (4.12)
pq 2 pqg 20 9 T)p p T/ q

since h,, =g, —2¢, . But 0g, =0;hence from (4.9) we otain:

pq-”

o¢ 1 0¢ ., :
op :Eé‘g‘zﬁ =E%[hq (5xr)’p +hp (5xf)’q] ’
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and taking into account also (4.12):

o¢
op = hy(ox.), 4.13
¢ agaﬂ ﬁ( xr) a ( )

From (4.5) in the case of an isothermal virtual displacement, and an iso-
tropic medium it is possible to obtain:

6¢ ‘ a
ag ——hy(6x,),, =T (6x,).- (4.14)

A virtual displacement is arbitrary and the relation 4/ =05 —2¢&] is

valid. So (4.14) means that is valid the following stress—strain relation: we
obtain the stress—strain relations for an isotropic medium

T = p[ 0f —2&” 0f ] (4.15)

08y, 7 Oy,

Taking into account the relations between covariant and mixed tensor the
(4.15) can be reduced to the form

0 0
Ty = p[af —2¢" ¢j (4.16)

A
7 o&”

Since /,,1,, and I, are respectively first degree, second degree, and
third degree in the strain tensor components &,,, see [1]§ [3], to a first

approximation the stress—strain relations (4.16) for an isotropic medium
reduce to Hooke’s law of the usual approximate theory

«_ Opg'
TS = .
B o gﬂ

a

(4.17)

The hypothesis that the elastic potential is a function of the deriva-
tives"a,, of the Euclidean metric tensor gij(x) in the strained medium, of
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the Euclidean metric tensor aﬁc(a) in the unstrained medium, and of the

temperature T allows us to reach the conclusion that at a constant tempera-
ture both eq. (4.16) and eq.(4.17) give the stress tensor as a function of the
strain tensor . Taking into account eq. (2.20), we can conclude that the stress

tensor is a function of the covariant derivative of the displacement s,. In
ref. [8], Cap. IX, § [5], with reference to the case of small strains — eq. (4.17)
— the following relation is indicated

Ty =cy€",

ikrs

where the elastic tensor ¢, .. appears. The quoted reference takes into

ikrs
account the unstrained medium and the proper reference system; because of
the particular choice of the reference system in the strained medium we can
adopt there the same formulation. The elastic tensor results to be symmetric
with respect to the two first and the two last indices. For an isotropic me-

dium the elastic tensor can be put under the form:
cikrs = _ﬂ‘xik‘xrs - /’l(‘xir‘xks + ‘xkr‘xis )’

where Aand i are the Lame’s constants and x; is Euclidean metric tensor

in the medium. In [1] one can find the demonstration that, in order to ap-
proximate the expansion by series of the elastic potential up to the first
order, two constant are necessary — as 4,V — and to reach the second order

five constants are necessary.

4.2. Non-linearities in the equilibrium equations

The equilibrium equation (3.5), beside the mass forces, contains the co-
variant derivative of the stress tensor. We can put the problem under the
form of the following equation system:

{r/ + pM? =0,

k

a aTﬂa oa a o a
>{T/€ = 3 -T ro‘k_Tﬂ Lo

X
Ty = Cs&” s
8ap = apCt 284, (4.18)
€ = (si/k + 81 =S,k ) ,
iy = &, —T7s

ila ia® o
ox“
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where the unknowns 7%, 8up»>Eup-S;— functions of x; — appear beside the
known quantities ;¢ ,c,,, and where the Christoffel symbols — that are not

tensors — are given by (2.18). The (4.18) system and the (2.18) can be con-
sidered a system where the unknowns are the s,. Such system contains all
the non—linear component of the problem. Obviously simplifications of the
mathematical model can be obtained, so reducing it to approximated analy-
ses, disregarding terms of various order in the s, unknowns and theirs
derivatives. Beside the assumption that the & are small, a rationale way of
thinking, based on the mathematical model itself, in order to choose the
terms to be disregarded is impossible. The choice must be operated for each
problem, taking into account, beside the field equations, the boundary condi-
tions, because they can strongly influence the amount of the response to the
various terms.

When approximated approaches are accepted, other simplifications are
possible, as for instance to determine the response to external loads
M’ —@” | where ¢”allows us to take in consideration a problem that, by
means of a proper mathematical model, admits as an easy resolution a
configuration s*, and to assume such configuration s* as reference for a
simplified mathematical model where ¢” are the external loads and § are
the unknowns — for instance a linear mathematical model taking into account
curvatures and twists of s *and disregarding those due to §.

Sample problem

In order to give a simple applied example of approximated approach, let
us consider an hollow initially curved beam with a thin walled square or-
thogonal section of side b, subjected to an external force system F consist-
ing in a constant bending moment parallel to a section symmetry axe — say

the x = x' axe. The c.g. initial axe has a curvature ray 1, in the plane perpen-

dicular to the x'axe, that results a symmetry plane for the beam. The c.g.
deformed axe will be contained in the symmetry plane, where the axes x’
— contained in the normal section — and x°— orthogonal to the normal sec-
tion — are posed. In a first approximation sufficient for our purposes, the c.g.
axe will assume the form of an arch of circle o R ray. In a real behaviour
the square section will assume a form not still square — in particular both the

compressed and the stretched walls will assume a displacement toward the
inside of the square. Such kind of deformation can be avoided in a first
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degree of analysis introducing a distribution ¥ of external mass forces

applied to the two interested walls in such a manner that we can consider
that in a first approximation the square section will assume a form still
square. The Euclidean metric tensor of the medium reference system has

only three components different from zero: ,c=1, ,c=1 and

2
Ty —X r 2\ . :
33C= =—-, where r = r(x ) is the radius of curvature at the

Ty %

2 .. . . .
X" position. Thus it is possible to calculate the deformation by means of the
ordinary beam theory. If the Poisson modulus is considered zero, the defor-
mation under the F'—i/ external load system creates a strain tensor with

1(R —x° ’ 1 _xY
X r,—X
only g, =—| 22— | ——| 2 is different from zero and a stress
33
2 R 2 7

o 0
tensor with only 7}, = E¢,, different from zero, where R = R(y) is the

radius of curvature at the x> position and E is the elastic modulus.
Taking into account (2.21) and (2.20), in the Euclidean metric tensor in

2
R —x°
the strained medium only g,, =1, g,, =1 and g, :("R—) result
0
different from zero. Taking into account (2.15), the Cristoffel symbol gives

1
F33_(R0—x2) R’

In the equilibrium equation (3.5), M being equal to zero, the not summed

index indicate the equilibrium component. From (2.17) it is possible to obtain
7, =0
and

b _ or”! . oT”? . or”” .
“ ox'  ox, ox’
AT + TAT? + TATS + TS T + T8 +TAT? + T4 T, +TAT? +TAT +

0 T+ T TP + T TP + T T + TP + T TP + T, TP + T, TP + T3, T

The addend of the second member that contain Cristoffel symbols are dif-

. .33 - .
ferent from zero only if thay contain 7" . If we limit our analysis only to the
equilibrium equation = 2 we obtain:
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TZI T222 T23
88 1 +aa +aa —+I5,77 =0
X x, 2%

The term T BBT; is a contribution deriving from the combination be-
33 .
tween the stress I and the effects of the deformation of the reference

1
system, that is F; = E The force distribution ¥ results

1
Ty
4 R

Let us now assume the form due to the application of the force system
F —y , with the curvilinear co-ordinate system x' obtained as deformation

of the initial system ’a, as initial con figuration for the analysis of the
effects of y, in the system x'itself. A displacement system S, generates

effects that can be calculated in order to verify that the various axiomatic
theories can be obtained with simplifications of the tensor one. For instance,

a displacement system where only the S, is different from zero generates a

well known extension term in the x° direction. In fact equation (2.19) gives
k€ :l S+ S+, S80S
2

and calculating we obtain
S,
&y = .
R

5. Boundary conditions

The mathematical model, beside the field equations, is completed by the
boundary conditions. They are surface forces applied to part of the boundary
surface and displacement imposed (constraints) to the remaining part. Obvi-
ously such conditions are to be put on the deformed medium boundary
surface, but this doesn’t generate problems due to the combination between
deformations and forces.
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6. Structural stability analysis
Static stability analysis, under conservative external loads, for infinitesi-
mal displacements &.S,, can be performed utilising the deformed curvilinear

co-ordinate system as initial system and determining the lowest value of P_

and the associated infinitesimal displacement system, where the first varia-
tion of the external actions, necessary in order to have the equilibrium, is

zero. Because the S, are infinitesimal, the equilibrium equations can be
reduced to a linear form as the 8§, are concerned. Obviously the analysis

can be performed also determining the lowest value of P, and the associ-

ated infinitesimal displacement system, where the second variation of the
total potential energy is zero. Where the equilibrium equations are reduced
to linear form, the problem can be resolved also by means of the total poten-
tial properties, [9] and [10]. The existence of the involved eigensolutions is
demonstrated, [13].

Conclusions

The problems of elasticity, where non—linearity derives from geometrical
effects of combination between deformations and stresses, have been studied
with a tensor three—dimensional approach. Deformation effects have been
analysed by means of the Cristoffel symbols in the deformed medium with
respect to that of the elastic medium, in a Lagrangean approach to the struc-
tural behaviour, where displacements are chosen as unknowns of the prob-
lem. The non-linearity in the equilibrium equations was completely taken
into account in a proposed equation system.

An equation system, where the unknowns are the displacements due to
the applied forces, was obtained, that allows us to take into account all the
non linearities generated by the combination between stresses and deforma-
tions. The choice among the terms to be disregarded must be operated for
each problem.

When approximated approaches are accepted, by means of proper mathe-
matical models the configuration under an external load system with a no
great difference from the applied one, can be assumed as reference for a
simplified linear mathematical model to apply the difference between the
external load systems.

A simple application to an hollow initially curved beam with a thin
walled square orthogonal section, subjected to a constant bending moment,
allowed us to show the presence of a crushing pressure on both the com-
pressed and the stretched wall and to evaluate the amount of such a pressure,
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deriving from a combination between stresses and deformations, due to the
bending moment.

The interaction between deformations and stresses is particularly impor-
tant in those structures where components with small thickness and wide
extensions are present.
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