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Elastic membrane behaviour
of thin plates as wave propagation
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Abstract. Any membrane elastic dynamic phenomenon in a two-
dimensional, continuous, not bounded, homogeneous and isotropic
medium, without external field forces, has the nature of circular wave
propagations. There are only two kinds of circular waves with different
propagation speeds. At each time, it is always possible to separate the
motion in two components, propagating respectively in two kinds of
waves.The motion of a point, at a given time, depends on the motion of
two kinds of waves at a previous time on two circumferences having as
radius the distance travelled respectively by two circular waves.

Riassunto. Ogni fenomeno dinamico elastico membranale, in un
mezzo bidimensionale, continuo, non limitato, omogeneo e isotropo, in
assenza di forze esterne, ha la natura di propagazioni per onde
circolari. Ci sono solo due tipi di onde circolari aventi differenti
velocita di propagazione. In ogni istante é sempre possibile suddividere
lo stato di moto in due componenti propagantisi rispettivamente nei due
tipi di onde. 1l moto in un punto a un certo tempo dipende dalle medie
dei moti dei due tipi di onde a un tempo precedente su due
circonferenze aventi raggi pari alle distanze coperte dalle due onde
circolari.

1. Mathematical model
1.1 General remarks

It is well known the possibility of considering any three-dimensional
dynamic phenomenon in continuous and homogeneous media (without
external field forces) as a wave propagation (see, for example, [1]).

In order to discuss the problem of longitudinal dynamic phenomenon of
one-dimensional media, with time variable boundary condition location, the
A., ([2]), highlighted the benefit, in order to develop an appropriate
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mathematical model, to make use of a vision of a dynamic phenomenon as a
sum of wave propagations.

By use of such a vision, the A. considered then various problems
concerning dispersive media, bending phenomena, and phenomena of
vibrating strings with both uniform and variable tension ([3], [4], [5], [6]).

In the case of three-dimensional media, the basic idea of wave
propagations becomes useful also to try discretized approaches to the
problems consequent upon time variable boundary conditions locations.

The present work deals with the problem of the membrane dynamic
behaviour of flat shells, by the above mentioned point of view.

An approximate, mathematical model for the problem of the membrane
dynamic behaviour of flat panels can be derived from three-dimensional
model (see, for instance ,[1]) after introducing the right hypoteses and
corrections. The hypotheses of “plane stress” seem to be the most
appropriate, since we consider the case where the transverse external loads
are zero.

This behaviour implies, if we consider the Poisson’s effect, that the
internal transverse displacements are not zero, but assuming in the model the
hypoteses of small thickness, at limit vanishing, they can be neglected, by
the point of view both of internal strain-stress and of kinetic energy.

The hypotheses to be adopted, for the above prospected case, are the
following:

- membrane stress are constant along the thickness,

- displacements and strains in the middle plane are constant along the
thickness,

- other displacements, strain and stress are zero.

Among other things, a consequence of such hypotheses is a necessary
correction of expression of a Lame’s constant in terms of longitudinal
elastic modulus E and Poisson’s constant J, in comparison with three-
dimensional problem formulation. Under the above mentioned hypotheses
we can write, for a generic orthogonal reference sistem x, y in the middle
surface plane':

e = (1+x)o.—x20,

X E >
1+ v)o,— y20

8y=( Z)g 4 . la,b,c)
20+ y)

xyZTT.

! Eq.s 1a, b, ¢) are obtained from relations refered to principal axis and operating an axe rotation.
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where € ,€, and yxyz are the local strains and 0,0, and Txy3 are the

local stresses.
In 1a,b,c) it is
20,=0,+0,. 2)

Dilatation y is expressed by divergence, which, taking into account (2),
equals:

1+y)-2 1-
Y= gx +£y = wzam = ._Z_zo'm R
from which we obtain:

26 =L 3)
m-]__l .

Taking into account (3), equations 1a,b,c) become:

E
1-x

£, = ,
E
E
(1+Z)0'y‘llf—7
£, = 5 4 , Ta,b,c)
20+ y)
Vi =TT-

From the above equation we can compute 0,,0, and 7:

Oux Oy

F

2 Tangenzial strais is here defined Y/ x = , where %, and #,, an the displacement

components.
3 e e .
Normal stresses are positive in tension.
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E XE
x= gx+ }/’
I+x I+ -2
E YE
o = £ + . 4a,b,
T e pa-p 0
e E
2(1+Z)7'

Introducing the following expression of Lame’s constants for the
membrane two-dimensional case:

7 __E
v p)d-g) M 21w )

equations 4a,b,c) give the following equations of stress state under the
hypotheses of “plane stress’:

o.=Ay+2ue,,
o, =Ay+2ue,, Sa,b,c)
T =lu7/xy'

No comment is necessary about identification between (4 and shear
modulus G, whose expression in terms of Young’s modulus £ and ) has
been already introduced in (1c).

1.2 Dynamic equations

Let x,y be a rectangular coordinate system in the (middle) plane of panel
and r,@ the corresponding polar coordinate system. Let uv be the
component of vector s in the first system, so that:

s=iutjv.

Let f be a scalar. The following usual expressions are valid:

J _07u av p
ws_8x+o7y’ /
AsciAusiAvei 82u+82u\ (7% PR .
SSIAUTJAV=L 9 x2 ayz /i Jx’ 0‘,sz, )
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df If
gradf—laxﬂc?y, 8)
A°f d°f

Af = P +0_)y2 =divgrad f, 9)

_[ov_ouy
rot s= P 07J7J ) )

(% 9w ) (9w W)
gaddzvs=1[8x2+0_)x0_)yJ+j(

Ya
P
S
4 r
J
N
L > >
0 i x
Figure 1

Let us assume that:

ds 07Sy

X

s=(sx,sy),y= P + 7y 12a,b)

é’x8y+8y2J )

179

11)

and, taking into account 5a,b,c), and (9), the scalar dynamic equations are:
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(A+ ﬂ)? + UAs +pF, = ps,,
X

X 13a,b)

J i}
(A+ 1 )a—’y/ + pAs, +pF, = ps,,

where F, and F, are the components of possible external loads.
Eqgs. 13a,b) can be summarized in the following scalar equation:

(/1+,u)g7’addivs+ﬂAs+pF:ps. 14)

1.3 Irrotational oscillations

If we assume that:
rots=0,

it is well known that there exists a function ¢ such that:

s=grad @.
Eq. (14) , with F=0, yields:

(A+u)As+uAs=ps

and, moreover:

(A+2u)As=ps. 16

If we put:
A+2
b= |E
Yo,
it follows that:
1
As —b—zs =0,

which is equivalent to the following two scalar equations of the same form
ins, ands:
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( 1

J As, —b—zfs'x =0,
17a,b)
|
[Asy —b—zsy =0,

and represents an extension of equation of vibrating strings to the two-
dimensional case.

1.4 Zero dilatation or solenoidal oscillations

If we put div s=0, we obtain from eq. (14), with F=0:

UAs=p§, 18
that is, taken a = ﬂ:
\ p
1.
As=— §, 19
a

which is equivalent to two scalar equations of the same formin s, and s,.
These equations belong to “vibrating strings” kinds.

1.5 Oscillations of any kind

The most general kind of motion (displacement s) can always be led
back to a combination of two displacements, s, and s, , irrotational the one
and solenoidal the other. In fact we can always determine a function ¢ such
that:

Ap=divs. 20)

From (9), taking into account (20), it follows that:
div(s—grad ) =20, 21)
which means also that it is possible to find a vector €2, such that:
s—grad o =rotQ 22)
Thus, on the basis of (21) and (22),
s,=gradeo , s,=rot¢p 23ab)
result, respectively, irrotational the one and irrotational the other, with
s=s, +s, . 24)
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2. General properties of wave equation
2.1 Propagation by circular waves

As a consequence of eqs. 17a,b) and (19), let us investigate about the
following kind of equation:
10
car
Let us consider a circumference / having radius » and centre P and
delimiting a circle 4.

AV = 25)

Figure 2

Let ¥ be the integral of W at time 7 on the boundary /:
1
2 v’
Making use of polar coordinates 0 ,@ we have:

dl=rdw

Y(rt)= J\Pdl . 26)
)
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and eq(26) becomes:
Y(irt)=—— T‘Pda) 27
( 4 ) 2 T ) * )

Note that rW(r,f) =¥ coincides with the medium of ¥ on the
circumference having radius r.
On the circle A4, the following relation is valid:

1 P 4

L A‘PdAz? Ry

Manipulating the left side member in eq.(28), noting that d4=dl dr, it
follows that:

a4 . 28

a2 LY,
v dn 74 9F ’ )

d d
On the other hand, it is Tn=o, dA= p dw p, where 0< p<r and
n r

dl=rdm, so that eq. (29) yields:

A S 17°f o
,3rrdw_02£ :)ratzpdwdp, 30)

2 2
¥ 11 j’ 2°¥
r f— do=— 2} do, 31
, oar c ! pap , dt /
Finally, first derivation of (27) and manipulation of the result, taking into
account (31), yield:

¥ 1T ,0°¥
2 2
== dp . 32
r 8 7 cz ;!.p a t2 p )
Deriving eq. (32) with respect to r , it follows:
N\
if 0¥ | 1 ,9°Y 3
Brtr BrJ_c2r ot )
and dividing (33) by 7> we obtain:
\
10 r , 0¥ | 19°Y
- =— 34)

r_zo'?r( o"rJ A
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1

2
Tr

where ¥ =

fwar.
!

Such a result can be demonstrated in another way (see for instance App. A).
The left hand member in eq. (34) can be rewritten in the form™:

ii(2&¢1_182 -\17 35
rZ&’rLr ar J—r&’rz TR %)

so that eq.(34) itself becomes:
\ \

8{1’?} JQZ(r@J
art & ar

which is the equation of vibrating strings for the function r¥, with
variables r,z.

36)

2.2 Propagation in two-dimensional problems

Because the fact that travelling waves are not zero in »=0 , it is not
possible to obtain, for the two-dimensional case, an analogous equation to
Poisson’s one for the three-dimensional’ case, which yields the general
solution of equation

19°Y

AY =——7,
& at’

25rep)

4 In fact, it is:

1o |1
——|r¥ |=—
rarz r

| 10% 0°% 10F 209 o7%9
|=— + +— == +
Jrl_ r_I r dr 8r2 r ar ror ¢9r2

> See the Poission’s formula as obtained in [1] and as taken up again and used in [7].
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when it is defined in a not bounded (two-dimensional) space and when

s : ¥ . .
initial values ¥, , ‘I’O and 8— are established wherever in the space6.
T

The general integral can be put in the form:

r¥=f(r+ct)+glr—ct). 37

Function r'¥ is, really, the average along the circumference with radius
A

r, at time ¢ Denoting it with W(7,?), it is possible to make use of the
considerations done, [8], about one-dimensional propagation phenomena:

flet) =—gl—ct).

Note that, when » — 0, ¥ — ¥(r = 0). Equation 37) gives values of
N
r'¥ =¥ that are travelling in the increasing » direction under the component

g The same fand g can be considered as travelling in the plane where 7’s
are negative starting from the origin in the decreasing » modulus direction
and in the increasing » modulus direction respectively.

In other words, f and g can be considered as waves trapassing the point
r=0 from the negative r conception to the positive » conception and vice-
versa respectively. Such circumstance is true also in the three-dimensional
case, where it is not utilized because of previously mentioned Poisson’s
theory.

A A i
If W(r,t") and W(r,t") are given, where ¢~ is an assigned time value, it is
possible to determine the two travelling waves #(r+ct) and g(r—ct),

which the phenomenon can be decomposed in.
We can write:

A
Y(rt)=f(r+c)+g(r—ct)=f(q)+g(p), 38)
where g =r+ct , p=r—ct.Therefore:

A af dg
Yirt)=c——c—
(r,t) cdq cdp

and, in particular, as time " is concerned:

39)

®mn fact, it is impossible in this case to determine a radially propagating (medium) function having zero
value at 7=0.
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dj d;
wonft] {8

Let us now consider the representations of f(r+ct”) and g(r—ct’),
such that:
A=g(r—dr—ct’),
B=f(r+dr+ct”).

From eq. 38) we have:

‘/{\‘(r,t*)zf{r+dr+a[t*—-—)_| g[ dr—{*—ﬂ)},

where the displacement in 7 at ¢~ is obtained from values of / and g in an
appropriately changed position and time. Similarly, we have:

A
‘l{r,t*+%j=f[r+dr+ct*]+g[r—dr—-ct*]. 40)

A
Putting now the speed W(x,?) under the form:

‘/'I\’(r,t)z{\/!\{rt +—) ‘/I\’(rt ]di

we obtain:

‘/I\‘(r,t) =;,c-t—[f(r+dr+ct*)—f(r+ ct*)+g(r—dr——ct*)—‘g(r——ct*)]

af Jdg ,
‘P(rt) c{[aq] (0.)1)1’”}, 397)

which is another form for the meaning of eq. (39).
Deriving eq. (38) with respect to » and putting eq.(39”) in another form,
we obtain:
A
¥
ar

or

(r,t)=§)—];(r+ct)+g—lg)(r—ct), 41)
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A

10 \P( )

—(r,t)=

cdt

or, in other words:

L sa)-2E -y 2
S (=g e 4

‘/}\’,(r,t)=fq(r+ct)+gp(r—ct), 41’)

IA
;‘I‘(r,z‘)=fq(r+ct)—gp(r—ct). 42’)
If we put:

Y= (r. 1 * : 9 £
Y=Wrt) f=f(r+ct’ ) g=g(r—ct’) f, = 6’_qJ )

dg) '
gr'_'(

J , from (38) and (39”) we can obtain:
8 P rt”

A A
Y=f+g, g=¥-/,
‘}}\’ Jdf
g VAN N
—=———=f -WY+f =2f -V
c 94 dp f f.=2f,
Therefore we have:
A A
Y+¥/ ¢
L= , 43a)
2
A A
Y-¥/ ¢
g =

. 43b
5 )
Eq.s (43a) and (43b) can be integrated as follows:
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A A

Y r1¢
=4 | ——
f 5 j2cdr+c1,

A A
5 dr+c;

where it results ¢, = —c,, because of eq.(38).
On the other hand, ¢, =—c; is arbitrary but indifferent because

A A
f =c, g=—c, generate ¥ =0 and ¥ =0. Therefore it is possible to
choose ¢, = 0. As a result we obtain:

A

forver )= i [ X 4 44a)
rect)=Srloodrn a

A A

R S 4
g(r—ct’ )= Z—IZCdr. 44b)

Eq.s (44a) and (44b) allow us to obtain f and g from ‘P and ‘I’ When

‘P(r t') and ‘I‘(r t") are known, it is possible to calculate J“I’dr starting

from a value 7 of r, and to determine fand g by means of (44a) and (44b).
Such functions f(r + ct) and g(r — ct) are travelling waves.

Conclusions

Similarly to what happens in the three dimensional combinuous dynamic,
any membrane elastic dynamic phenomenon in a two-dimensional,
continuous, not bounded, homogeneous and isotropic medium, without
external field forced, can be reduced to circular wave propagations. There
are only two kinds of circular waves with different propagation speeds. At
each time, it is always possible to separate the motion in two components,
propagating respectively in two kinds of waves. The motion of a point, at a
given time, depends on the motion of two kinds of waves at a previous time
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on two circumferences having as radius the distance travelled respectively
by two circular waves.

Appendix A
We require that for an unknown function f holds the following relation:
)
19| ,df | 1d°f
r’ 97 | - { r Al)
Parl ar| & at

where kis chosen in order function fcould verify the wave equation.
If we multiply eq.(B1) for 7> and integrate with respect to 7, we obtain:
,of 17 ,d°f

}"___27’

Jdr ¢ dt?

r* dr A2)

Let us suppose now that @ = r”j(p dl = r"“_[qo dw, with
unknown. Eq.(B2) than becomes (taking into account that d4 = r dw dr):

r? ”“j f ijr r r”“dr_'.gi]:da)

and, moreover:

1
rzr‘”_“ =—7Jr r r"

A
If the wave equation is satlsﬁed, on the basis of eq.(29), exists a function ¥
such that:

B3)

A gt 0¥
—do=—|"—
ar’ o at’
From (B3) and (B4), if we impose rir#* =r, it follows that
2+ u+1=1,thatis 4 =-2 and f =¥, obtaining, finally:
¥ 1 ¥

‘é—’rd T >

From eq. (B3) it follows that, if £+ 2 + (=0 (which implies, if y=—

dA B4)

U+l

k+2+,ua]A

that k=0), the wave equation is valid.
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