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Riassunto. L equazione delle corde vibranti é I’equazione di campo
fondamentale per i problemi in esame. Le onde che si propagano, che
costituiscono la base per ogni soluzione di tale equazione, hanno
proprieta di riflessione, su contorni aventi ubicazioni dipendenti dal
tempo, che I’A. ha studiato in precedenza e che sono qui richiamate.

Si propone una analisi teorica che consenta [’individuazione delle
due onde propagantisi, quando siano noti, ad un certo tempo, gli
andamenti degli spostamenti e delle velocita.

Sulla base di tale corpo di conoscenze si propone e si applica ad
alcuni interessanti problemi un approccio discretizzato alla dinamica
lineare unidimensionale con ubicazione degli estremi dipendente dal
tempo.

Abstract. The vibrating string equation is the fundamental field
equation of the proposed problem. The travelling waves, which
constitutes the base for each solution of such equation, have properties
of reflection on boundaries having time dependent location, previously
studied by the A. and here recalled.

A theoretical analysis which permits the determination of the two
travelling waves if displacements and their speeds are known at each
time.

On the basis of such body of knowledges a discretised approach of
the unidimensional linear dynamics with time dependent boundary
location is proposed and applied to several interesting problems.

1. Introduction

In the unidimensional dynamic problems in non dispersive media, as the
extensional wave propagation in an unidimensional body, the vibrating
string equation holds as field equation:

vy _ 13y
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where x = space coordinate, 7= time coordinate, ¢= propagation speed of
longitudinal phenomena (¢ = /% , Ebeing the elastic modulus and p

the density of the constitutive material), and where ¥ can be identified as
the displacement s, the material speed #, the longitudinal local stress O or
other quantities obtainable by means of derivations starting from ¥/ .

As it is well know, eq. 1) admits the solution

l//=l//{t—%j+l/f{t+%} 12)

composed of two travelling waves: ¥/, in the positive x direction and ¥, in

the negative x direction. The function ¥, and ¥, can be of whichever
shape, as generated by the boundary conditions.

In the case of time dependent boundary location, we have the problem of
the reflections of such two waves on the boundary themselves. The A.
demonstrated, [1], that the reflections of the waves are ruled by a
foundamental law concerning the material speeds u, (or the local stress ;)

(i=12).If v is the speed of the change of the boundary (# = 0) location,
positive if directed as the propagation wave, it results:
u=—u<"Y (i#j). 13)
c+v
In other words, in the case of a boundary condition # =0, whose
location has a speed Vv, an incident wave, having a speed u; generates a

c—=V

reflected wave having a speed u, =—, .
c+v

A tipical problem one has interest to resolve, is the following: if an initial
status is defined by means of a displacement function S(x,t), and a speed

function u =$'(x,ts), both defined in an interval from x, toxgat a time
I, .determine the evolution of the dynamic phenomenon, where the
boundary conditions (S = 0) have locations depending on #(and obviously
coherent with x, and x; at £;).

Other problems can be referred to introducing external actions or
boundary conditions of different natures.

If the afore mentioned typical problem is taken into account, we can
consider the possibility of facing it by means of a discretised (i.e.
approssimated) finite difference method, that could be utilized in automatic
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means. The afore mentioned foundamental law that rules the reflection of
waves can be taken as the correct behaviour and a paragon for the
discretised calculation.

2. A theoretical analysis supporting a finite difference approach

Each dynamic phenomenon S(x,t) can be considered as the sum of two
travelling waves s, (x—ct) and s, (x+ct). If s(x,to) and u(x,to) are
known, the first step is to calculate the proper functions s, and s,, we can
indicate respectively with gand f . Let’s considere the solution into the
form 1.2). A local value (in x ) of the speed for £ =0, given by

u(x,0)= [%u(x,t)] , 2.1)

t=0
corresponds to each s(x,t). Equation 1.2) can be put in the form:
s(x,t)= flx+ct)+glx—ct) 2.2)
and we have:

f(x)+ glx)=1s(x,0), 2.3)
2 ftre)] f2gt-c] =[Zen] . 20

o [% Flet ct)]mo _ C[E(x;'_’kgt_) Fleet ct)]

An analogous expression holds for g(x) . Let us consider a df and the

t=0

correspondent dx = cdt . Because of the propagational nature of gand f,
the following equation holds:

f [(x + cdt)+ c(t - dt)]+ g[(x - cdt)— c(t - a’t)] = s(x, t) , 2.5)

giving s(x,t) as a sum of two contributions evaluated at the time ¢ — df in
the proper positions. Therefore we can write:
s(x,dt)= f(x+cdt,0)+ g(x - cdt,0),
and
s(x,~dt)= f(x—cdt,0)+ g(x + cdt0).
On the other hand, it is also:
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u(x,0)= [s(x, dt)- s(x,—dt)]ﬁ .

Therefore we have:

_ [f(x +cdt)+ g(x— cdt)]— U(x —cdt)+ g(x+ ca’t)]

0)= . 2.6
0) 2di )
We can arrive to the same expression in the following manner. Let’s
evaluate:
: flx+cdt)- fx—cdt)
= , 2.7
/) 2di )
. g(x—cdt)- g(x + cdt)
= . 2.8
&) 2di )

Introducing 2.7) and 2.8) into eq. 2.4), we obtain:
2dti(x,0) = f(x+cdt)— f(x—cdt)+ g(x — cdt)— g(x + cdt), 2.9)
and, operating, we can realise that:

s(x+cdt,0)= f(x+cdt)+ gx—cdt),

s(x—cdt,0)= f(x—cdt)+ g(x +cdt)
and, as a final result:

24dti(x,0) = s(x + cdt,0)— s(x — cdt,0). 2.10)

Solxgt+cdt)
A

So

So(Xo-Cdt)

Figure 2.1
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If s(x,t*) and u(x,t*) are given, where " is an assigned time value, it
is possible to determine the two travelling waves f (x +ct) and g(x - ct),
which the phenomenon can be decomposed in.

A
s

) / u(x,t)

]

\

/

\

\v(x, )
AN

B
'/
fix+ct) ]
— \2 (x-ct)
x X
x-dx x+dx >
Figure 2.2

We can write:

s(w.t)= fla+er)+glx—ct)=flg)+glp). 211
where g =x+ct, p=x—ct. Therefore:

d d
u(x,t)=c—f—-c—g, 2.12)
dq  dp
and in particular, as time ¢~ is concerned:

u(x,t*)=c(d—f] —c(fg] . 2.12%)
Q) P )i

From eq. 2.11) we have:

s(x.2")= f[x+dx+ c[f‘ —%J}g[x—dx—c(t* ——dcfj] 2.13)

where the displacement in xat ¢  is obtained from values of gand fin
appropriately changed position and time. Similary we have:

s(x,t*+ilx—j:f[x+dx+ct*]+g[x—dx—ct*]. 2.14)
c

Putting now the speed u(x,t) under the form:
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«  dx \| ¢
)= x,t +— |-slx,t")|—
u(x ) l:s(x c) s(x )}
we obtain:

u(x,t*):—;—t{f(x+ dx+ct*)—f(x+ct*)+ g(x

or

- dx—ct*)—g(x—ct*)}

VY] _[%8 .
ulx,1 )—c{( > ], ( = J,} 2.127)

which is another form for the meaning of eq. 2.12”). Deriving for respect to
x eq.2.11) and putting eq. 2.12’) in another form, we obtain:
s ) )

—(x,t) = l(x+ ct)+—g(x— ct),
ox oq op

%%(x,t) gf; (x+ ) gi(x—ct) 2.16)

2.15)

or, in other words:

x(x,t) (x+ct)+g (x——ct), 2.15%)

u( ,t) (x+ct) gp(x—ct), 2.16%)
s(x )f f(x+ct) g=g(x—ct*),

f.= al .8, = ?f— , from 2.11) and 2.12), we can obtain:
aq xj* ap x.t‘

s=f+gand g=s5s-f,
u Jf OJg

=f - =2f. —s..
St =2,

Therefore we have:
s +’f/
fi=—755€
x B

2
s, —Y
2/c , 2.13b)

Eq.s 13a) and 13b) can be integrated, as follows:

Ky 1u
=—+|=——dx+¢,
s 2 J2¢ !

| —

n o

If we put s

2.13a)

&x =
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Ky 1lu
LN LR
E=5 7] e

where it results ¢, = —c¢,, because of eq. 2.11).

On the other hand, ¢, = —¢, is arbitrary but indifferent, because f =c¢,,
g=-—c, generate s=0 and u =0. Therefore it is possible to choose
¢ =0:

f(x+ct*):—;—+j~éu;dx, 2.16a)

g(x—ct*):%— g—l;dx . 2.16b)

Eq.s 2.16a) and 2.16b) allow us to obtain f and gfrom s and % . When
s(x,t*) and L't(x,t*) are known, it is possible to calculate judx, starting
from a value X of x, and to determine f and g by means of 2.16a) and
2.16b). Such functions f(x+ct) and g(x —ct) are travelling waves.

3. A finite difference approach

The considered problem is defined in x (t) — x, (t) see fig. 3.1. The
first increments of x, and x, are:
x,(t, +At)=x(t,)—v At and x,(t, + At)=x,(t,)+ VAL,

cAt cAt

\4
Y.

H { H >

A B

Figure 3.1- Interval of definition and its time
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where v, and v, are positive in the positive direction of x and where Af
is the discrete increment of #, we are taking as step in a finite difference
approach. In other words v,Af and vy;Af are the displacements of the
locations A4 and B of the boundary conditions.

Let us suppose now that ‘cl =k, ivAl and Icl =k, IVB , where k, and £k,
are integer numbers and ¢ is the propagation speed of dynamic fenomena
along x . Real problems are characterised by very high k, and k, values:

to consider only integer values for them has the scope of reducing our
considerations to such particular cases, requiring simple algorithm and
formulas. Another simplification we shall adopt is to take into account

values of v, and v, of the following type:

+v +v
vA=< 0, v= 0 3.1
-y -y
and to consider Vv, (t) and v, (t) piece-wise curves having their
discontinuities in corrispondence of multiples of Az, see fig. 3.2.

xAA

A 4

Figure 3.2- Example of a picewise x;=x4(¢) having
discontinuities at the ends of Ar interval and dx,/dt
equal to v, or 0, or -v
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The aim of this work is to demonstrate the possibility of approaching a
vibrating chord problem, where the boundary conditions have locations
depending on time, by means of a finite difference approach, coherente with
a theoretical formulation. To such a purpose the considered problem is
sufficient. The determination of algorithms suitable in more complex
problems is beyond the scope of the present work.

At the time # 4 and B had locations x,(f,) and x,(z,). Let the

interval from x , (to) to X, (to) be a multiple of vA?.
A

N
u

(e}

x
l 1 ] | 1 ] ] |
1T I — >
P
vAtI ! vl xp(tg)

Figure 3.3- Discretized data on s(Zy), u(ty) and
o(ty) for a simple problem

The typical dynamic problem to be considered is the determination of the
evolution for 7>, of an initial (t = to) state where s(to ) , u(z‘o) and

O'(to) are given. In order the problem can result well posed, such initial data
have to be obviously coherente. It is necessary first to discretise such data
by means of the values corresponding to the dots indicated in fig. 3.3). The
determination of the (discretized) travelling function f (to) and g(to), can
be obtained as follows:

2. ()= Srg’o)-; “odinive, 32
where A is an arbitrary value of » and
iis a variable value (h<i<r),
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f,(to)zSr(t0)+2ui(t0)vAt—cl 3.3)

2 i=h 20
and where ¢, is a constant to be determined on te basis of 0 ’s values (for

instance at a boundary).
In the case of travelling wave having 0 = const , as follows, [1]:

—a- <),
S(x,f()){ a-bx  (x<I)

=0 (x>1),
=bc (x<1),

u(x,t0 ){: 0 (x S l), 34)
=Eb (x<1),
a(x,t){: 0 (x>1),

S(x,to)

VAt

e

\ ¢ >
h i r -1 ! I+1

Figure 3.4- A o=const wravelling wave

the discretization gives:
s.(t,) = (1= B)bvAt — (i — h)bvat = (1 - 1)bvAt,
U (to) = b,
with o, (¢, )= Eb.
Therefore:
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to):M—iévAt—cl,

£.(t,)= 5(t) +2 VAL +c,.
2 = 2

Operating we have:

g, (to) (l r)val‘ bvAt ( _ h)— ¢ = (1 s h) bvAt ~c,,
2 2 2
fr (to ) _ (l - r)vat + bvAt (r _ h) (l h) bvAt Cl .

2 2

A choise of ¢, =—(I - h) bvat allows us to have £, (f,)=0 and
= (I-r)bvAt (h<r<l),
gr (tO
=0 (r>1).
This expression 3.5) coincide with the proposed 3.4). s(x,t0)= a—bx, if

3.5)

we pose a =IlbvAt and x = rvAt.
The proposed motion 3.4), can be interpreted by 3.5), g, (to) being a

displacement function travelling rightward at the speed c. During the
interval A¢, g has a traslation of AvAt . If the location not time dependent

of the boundary X, is greater of (/ + kJvAt, we have:
gt +A)=(I-r+kbvAt  (h<r<I+k),

gt +a)=0  (r>1+7).
On the other hand, if x, < (/+k—1)vAt, for instance x, = (I +1)JvAt, we
have:

s(l+1,2,+At)=0,
but it is:
2.ty + A1) = (k —1)bvAt,

hence there exists, see fig. 3.5:

£t + At) = —(k —1)bvAt.
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Such a leftward running function obviously initiated at the time ¢, + ~];—

k-1
with a zero value, and runned leftward during the time (—)At. The

boundary at / +1 introduces a reflected wave f whose effect is the zeroing

fla*29 glt+Ay

[+1-3 I I+1 I+4

Figure 3.5- Impact of a o=const travelling wave with
a fixed boundary
Note . This figure concerns the case k=4

of S(l +1L,1, +At). It is very easy to verify that, if the boundary rests at
[ +1, after another A?, at ¢, +2Az,
g, (t, +2At)= 2k — 1At
with the necessity of a function:
£ty +2A8) = —(2k —1)vAz,
and so on.

As an example of time dependent boundary condition we can consider
the case

s(l,t,)=0,
s(l+1,2,+At)=0,
s(l+2,t, +2At)=0,
where, during the period from #, +Af to #,+2Af, the boundary
condition translates from /+1 to /+2 and during the period from 7, to
t, +At from [/ to [ +1.
At the time #,in [ starts the f whose zero value reaches in Af the position /-k.
At the time ¢, + Af, we have
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frn(t, +At)=—(k=1)bvAT .

8lto+AY)
flto+AY
! 1) 12 X
& ) k >
Figure 3.6- Impact of a s=const travelling wave on
time dependent boundary

The slope of f results

(k+1vAt  k+1
During another At the boundary translates in / + 2, the zero value of f

runs to the point (/ — 2k +1) whose distance from /+2 is 2(k+1) and it
is

_(k-1)pvAT _ pk—1

Fran(ty +2A8) = =2(k —1)bvAt .

Therefore the slope of f is an invariant if v is an invariant.

4. Examples of various boundary conditions

4.1. Condition of zero displacement running toward the outside of the
definition interval

Let us propose several examples of boundary conditions, analysed in
simplified cases, such as:

c .
i) k =— assumed to be an integer number,
v
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ii) stress applied at the boundary having unitary values and so on. The
generalization of such examples, their combination in a superposition of
effects, the study of cases here non considered, are left to the reader. As an
example of time dipendent boundary condition we can consider the case,
(fig4.1):

s(l,¢,)=0,
s(l+1,t,+At)=0,
s(l+2,t,+2At)=0,
where, during the period from 7, + Af to f, + 2A¢, the boundary condition
translates from /+1 to / + 2 and, during the period from ¢, to 7, + Af from
[ to [+1. Obviously a travelling g is acting. At the time #, in / start the
f whose zero value reaches in At the position / — k.

s A
g(ty+Ay) g(ty+2A1)
flto+Ay)
gty
-k I +1 [+2

Figure 4.1- Time dependent boundary
condition

At the time 7, + A¢, we have
fra(t, + At)=—(k —1)bvAt .

The slope of fresults

(k—1)bvAr | k-1

(k+1wAr  k+1
During another A¢ the boundary translates in /+ 2, the zero value of f
runs to the point (/ —2k) whose distance from [ +2 is 2(k +1)and it is

Froa(ty +2A8) = =2(k —1)bvAz .

Therefore the slope of f is an invariant if v is an invariant.
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4.2. Condition of zero displacement running toward the inside of the
definition interval

Let us now consider the case (fig. 4.2):
s(l,t,)=0,

s(l—1,¢,+At)=0,

s(1=2,t,+2At)=0,
where, during the period from f, + At to ¢, + 2At, the boundary condition
translates from /—1 to /—2 and, during the period from ¢, to #, +Atf,
from / to /—1. Obviously a travelling g is acting. At the time 7, in / start
the f whose zero value reaches in At the position /—k. At the time
t, +At, we have:

fr(t, + At) = ~(k +1)bvAt .

The slope of f results

(k+1)bvAt | k+1

(k—1wAr k-1
During another A¢ the boundary translates in /—2, the zero value of f
runs to the point (/ —2k), whose distance from [ —2 is 2(k —1) and it is:

£ (t, +2A8) = =2(k +1)bvAz .

Therefore the slope of f is an invariant if v is an invariant.

gty+Ay) g(ty+2A1)

fltg+2A1)

flto+Ar)

-4 -2 -1

Figure 4.2- Condition of zero displacement running toward the inside of the
definition interval
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4.3. Condition of imposed stress running toward the inside of the definition
interval and no travelling functions are acting

Let us now consider another problem, due to a condition at the boundary
B, whose location translates at a speed v =—1, and where:

oc=1x=x,).
To notice that in the proposed problem only a displacement function f{x+ct)
will be present. Therefore between u and o the following relation holds:

E
O=—1u.
c

At the time #, the boundary is in /, fig. 4.3); at the time 7, + Af the
boundary is in /—1, and so on. At ¢, in / start a wave, that, if kK =4,

during At reaches [/ —4 , while the condition ¢ =1 reaches / —1.
4.4. Condition of imposed stress running toward the outside of the definition
interval and no travelling functions are acting

The problem is analogous to the previous one, but with v =+1, and
x, =1+(t, —1).

The stress condition is always o =1(x=x,). At the time #, the
boundary is in /, (fig. 4.4); at the time ¢, + At the boundary is in /+1, and
soon. At ¢, in [ start a wave, that if kK =4 during Af reaches /-4, while
the condition o =1 reaches /+1.

A
c

V=

ft))

756 A

=

Figure 4.3. Imposed stress running toward the inside
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S367

X

S Y ey I
flto*2A1)

u(ty+2A)

Figure 4.4. Imposed stress running toward the outside

APPENDIX A

If s= s(x,t*)= a—bx,and u = u(x,t*)= bc, we have:

s 1
==+—u, Al
/: 2 2c )
X:S—"——l—u A2)
2 2

From A1) and A2) one obtains:
1
f=2r—(udc, A3

2 2c

s 1
=———\|udx. A4
g 2 2c )

Substituting into A3) and A4) the initial data, we obtain:
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f=%(a—bx)+ibcx+c1 =la+c,

2c
1 1 .
g=—(a—bx)——bcx—c,=ta-bx—c,.
2 2¢
1
With an indifferent value ¢, = —Ea , the assumed situation is retrouved.

In fact
/=0,
g= a—b[x—c(t——t*)J,

and such travelling weaves give:

s[x,(t—t*)]= a—b[x—c(t—t*)],

u[x, (- )|=bc.
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